Se encuentra usted aquí

 
 

Docentes

Fabio Sánchez

Correo electrónico: 
fabio.sanchez -at- ucr.ac.cr
Teléfono: 
2511-6608
Oficina: 
CIMPA #7

 

Educación

Ph.D., Department of Biological Statistics and Computational Biology

Cornell University, January 2007

Sloan Scholar

 

Thesis Title: Theoretical Studies in Epidemiology and Social Dynamics.

Adviser: Dr. Carlos Castillo-Chavez

Bachelor of Science in Computer Science. Minor: Mathematics, June 2001.

Universidad Metropolitana, June 2001.

Intereses de investigación

Mis intereses de investigación radican en el modelado de enfermedades infecciosas, más específicamente, enfermedades transmitidas por vectores tales como: dengue, chikungunya y Zika. Sistemas de ecuaciones diferenciales no lineales se utilizan para modelar la dinámica. Estos modelos predictivos se utilizan para estudiar cómo se propagan estas enfermedades en una población. Además, estos modelos sirven para el desarrollo de estrategias de prevención/control para funcionarios de salud pública.

Curriculum vitae CV

Noticias

Ticos podrían estar recibiendo diagnóstico erróneo de dengue y chicungunya

UCR advierte sobre diagnósticos erróneos de dengue y chikunguña

¿Dengue o chikungunya? Ticos podrían estar mal diagnosticados

UCR advierte que Ticos podriían estar recibiendo diagnóstico erróneo de dengue y chikungunya

UCR: Ticos no reciben un diagnóstico del todo certero sobre dengue y chikungunya

Entrevista Semanario Universitario (a partir del minuto 12)

Boletín Oficina de ExAlumnos, Vol. 5, Febrero, 2016

From SIAM News, Volume 40, Number 3, April 2007. By Brandy Benedict, Modeling Alcoholism as a Contagious Disease: How “Infected” Drinking Buddies Spread Problem Drinking.

Investigación en proceso

  1. L. Barboza, F. Sanchez, G. Hernandez. Modelo Espacio-Temporal de la Incidencia de la Enfermedad del Dengue en Puerto Rico. In preparation.

  2. F. Sanchez and J. Arroyo. A two-sex mathematical model of Zika. In preparation.

  3. J. Arroyo and F. Sanchez. Infection model for analyzing biological control of coffee rust using bacterial anti-fungal compounds. In preparation.

  4. F. Sanchez, J.G. Calvo, E. Segura. Numerical Implementation: An Age-Structured PDE Model with Nonlinear Recidivism. To be submitted: SIAM Journal of Applied Mathematics.

  5. F. Sanchez, J.G. Calvo, E. Segura. An Age-structured ODE Model for Dengue Transmission Dynamics and Control. In preparation.

  6. F. Sanchez. A Highly Nonlinear Differential Equation Model: A Bifurcation Analysis. To be submitted: Revista Matemática: Teoría y Aplicaciones, 2017.

Publicaciones

  1. F. Sanchez, L. Barboza, D. Burton, A. Cintron. Comparative estimation of parameters for dengue and chikungunya in Costa Rica from weekly reported data. To appear in special edition of Journal Ricerche di Matematica (Springer), 2017 (Accepted).

  2. D. Murillo, S. Holechek, A. Murillo, F. Sanchez and C. Castillo-Chavez. Vertical Transmission in a Two-Strain Model of Dengue Fever. Letters in Biomathematics, Vol. 1 No. 2, December 2014.

  3. F. Sanchez, D. Murillo and C. Castillo-Chavez. Change in Host Behavior and its Im- pact on the Transmission Dynamics of Dengue. BIOMAT 2011 International Symposium on Mathematical and Computational Biology. Edited by Rubem P. Mondaini, 2012.

  4. A. Cintron-Arias, F. Sanchez, X. Wang, C. Castillo-Chavez, D.M. Gorman and P.J. Gruenewald. The Role of Nonlinear Relapse on Contagion Amongst Drinking Communities. Mathematical and statistical estimation approaches in epidemiology. Chowell, G.; Hayman, J.M.; Bettencourt, L.M.A.; Castillo-Chavez, C. (Eds.) 2009.

  5. F. Sanchez, X. Wang, C. Castillo-Chavez, P.J. Gruenewald and D.M. Gorman. Drinking as an epidemic–a simple mathematical model with recovery and relapse. Evidence Based Relapse Prevention. Edited by Katie Witkiewitz and G. Alan Marlatt, 2006.

  6. G. Chowell, A. Cintron-Arias, S. Del Valle, F. Sanchez, B. Song, J.M. Hyman, H.W. Hethcote, and C. Castillo-Chavez. Mathematical applications associated with the deliberate release of infectious agents. Modeling The Dynamics of Human Diseases: Emerging Paradigms and Challenges. AMS Contemporary Mathematics Series. Gumel A. (Chief Editor), Castillo-Chavez, C., Clemence, D.P. and R.E. Mickens, 2006.

  7. Sanchez, F., Engman, M., Harrington, L. and C. Castillo-Chavez. Models for Dengue Transmission and Control. Modeling The Dynamics of Human Diseases: Emerging Paradigms and Challenges. AMS Contemporary Mathematics Series. Gumel A. (Chief Editor), Castillo-Chavez, C., Clemence, D.P. and R.E. Mickens, 2006.

  8. G. Chowell and F. Sanchez. An Outbreak of Dengue in Mexico, 2003: Quantifying the role of interventions. Journal of Environmental Health, Vol. 68 No. 10, pp. 40-44, June 2006.

  9. J. Gjorgjieva, K. Smith, J. Snyder, G. Chowell-Puente, F. Sanchez and C. Castillo- Chavez. The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, Vol. 2 No. 4, pp.753-769, October 2005.

  10. D. Murillo, A. Ortiz and F. Sanchez. A Mathematical Comparison of Prevention Strategies for Addicted Women. Sonoran Journal of Graduate Mathematics, Issue 1, 2005.

Reportes Técnicos

  1. Transit Models in Costa Rica: An Overview
    Universidad de Costa Rica, Escuela de Matemática, 2016.

  2. The effect of rural/urban movement on Dengue transmission dynamics
    Arizona State University, Mathematical & Theoretical Biology Institute, 2014.

  3. Social Dynamics of Gang Involvement: A Mathematical Approach
    Arizona State University, Mathematical & Theoretical Biology Institute, 2011.

  4. Mathematical Modeling of the Sex Worker Industry as a Supply and Demand System
    Arizona State University, Mathematical & Theoretical Biology Institute, 2006.

  5. Mathematical Modeling of Cigarette Smoking among Adolescents as an Infectious Disease
    Arizona State University, Mathematical & Theoretical Biology Institute, 2006.

  6. The Effects of Myeloid Cells on Tumor-Immune System Interaction in Different Time Scales
    Arizona State University, Mathematical & Theoretical Biology Institute, 2006.

  7. Effects of Lifestyle Choices on Atherosclerosis: A Mathematical Approach
    Los Alamos National Laboratory, MTBI-02-05M, Mathematical & Theoretical Biology Institute, 2005.

  8. The Impact of Mosquito-Bird Interaction on the Spread of West Nile Virus to Human Populations
    Los Alamos National Laboratory, Mathematical & Theoretical Biology Institute, 2004.

  9. The Role of Vaccination in the Control of SARS
    Los Alamos National Laboratory, Mathematical & Theoretical Biology Institute, 2004.

  10. Change in Host Behavior and its Impact on the Co-evolution of Dengue
    Los Alamos National Laboratory, BU-1639-M, Mathematical & Theoretical Biology Institute, 2003.

  11. Preventing Crack Babies: Different Approaches of Prevention
    Cornell University, BU-1623-M, Mathematical & Theoretical Biology Institute, 2002.

  12. Small World and other networks
    Cornell University, BU-1588-M, Mathematical & Theoretical Biology Institute, 2001.

  13. Do we really have to take all our medicine?: Predicting the consequences of antibiotic misuse
    Cornell University, BU-1527-M, Mathematical & Theoretical Biology Institute, 2000.

  14. 2D SEDFLUX
    University of Colorado at Boulder Institute of Arctic & Alpine Research, Report, 1999.

Cursos Virtuales

Fecha de actualización: 13/10/2017 - 16:26

Fecha de actualización: 05/10/2017 - 17:58
Fecha de actualización: 27/09/2017 - 14:27

 

Fecha de actualización: 05/09/2017 - 14:31

logo-emate_200x99_blanco.png

 

Contacto

© 2016 Escuela de Matemática, Universidad de Costa Rica
Ciudad Universitaria Rodrigo Facio, San Pedro de Montes de Oca, San José, Costa Rica
Tel. (506) 2511-6551